Информатика и вычислительная техника


Логические функции двух переменных


Как уже отмечалось, для двух логических переменных х и у существует четыре различных набора: , , , . На этих наборах переменных (аргументов) может быть задано 16 различных логических функций f(х,у), так как 24 = 16. В таблице 5.1 приведены значения всех этих функций для каждого из четырех наборов двух аргументов.

108

Таблица 5.1

Логические функции двух аргументов

Аргументы Функции
x y f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15
0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Дадим краткую характеристику этим функциям, причем их рассмотрение будем проводить не в порядке нумерации функций в табл. 5.1, а в той последовательности, которая позволит выявить их общие и характерные свойства. Заметим также, что некоторые из этих функций уже были названы ранее.

  1. f14(х, у) - дизъюнкция (логическое сложение, операция "ИЛИ") переменных х и у, принимающая значение 0, когда оба аргумента х и у одновременно равны 0; во всех остальных случаях она равна 1. Иными словами, функция дизъюнкции равна max (х, у).
  2. f1(х, у) - отрицание дизъюнкции (операция "ИЛИ - НЕ"). Данная функция обращается в единицу только в том случае, если аргументы х и у одновременно равны нулю; во всех остальных случаях она равна 0. Часто в литературе функцию х ? у называют также операцией Пирса, по фамилии математика, исследовавшего ее свойства.
  3. f8(х, у) - конъюнкция (логическое умножение, операция "И") переменных х & y, принимающая значение 1, когда оба аргумента х и у одновременно равны 1; во всех остальных случаях функция равна 0. Иными словами, функция конъюнкции равна min (х, у).
  4. f7(х, у) - отрицание конъюнкции (операция "И - НЕ"). Данная функция х & у обращается в нуль только в том случае, когда аргументы х и у одновременно равны 1, и в единицу - во всех остальных случаях. Эта функция называется также операцией Шеффера.
  5. f9(х, у) - эквивалентность или равнозначность переменных х и у.


    - Начало -  - Назад -  - Вперед -



    Книжный магазин